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A unified model of stress relaxation and creep 
applied to oriented polyethylene 
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The stress relaxation behaviour of high-modulus oriented polyethylene fibre has been 
studied with regard to the response to successive small strain increments imposed on an initial 
relatively large strain deformation. For isotropic polymers, the results of such experiments have 
previously been interpreted in terms of a single thermally activated process modified by strain 
hardening. It has been found that, although this approach can describe satisfactorily some of 
the stress relaxation experiments on the oriented polyethylene fibres, it is unsatisfactory once 
the strain increments have exceeded a certain size, and that it is at variance with stress 
recovery experiments. It is shown that both the present stress relaxation and stress recovery 
experiments can be interpreted in terms of a model comprising two thermally activated 
processes acting in parallel. Furthermore, the parameters obtained for the stress relaxation data 
are consistent with those required to fit creep data obtained in a comparable stress range. The 
essential feature of the mechanical behaviour which was previously attributed to strain 
hardening can now be seen to arise from the transfer of stress between the two thermally 
activated processes in the two-process model. 

1. In t roduct ion 
During the last few years, there have been several 
studies in this laboratory concerned with the creep and 
recovery behaviour of ultrahigh-modulus polyethylene 
fibres, instigated because of their potential load- 
bearing applications such as ropes and reinforcing 
fibres. It has been shown that the equilibrium creep 
behaviour can be described in terms of two thermally 
activated processes acting in parallel [1, 2], and this 
representation has been tentatively extended to deal 
with stress relaxation [3]. It has been recognized that 
this approach has kinship with that proposed by 
Escaig and his collaborators for the plastic deformation 
of isotropic glassy polymers such as polymethyl- 
methacrylate and polystyrene [4, 5], and one of the 
authors (I.M.W.) is indebted to Professor Escaig for 
illuminating discussions at an early stage of the 
research at Leeds University. 

The Escaig approach [4-7], which has been used to 
describe stress-relaxation behaviour, is, however, 
different in detail from that proposed by the Leeds 
group. Whereas the Leeds theory, as we shall term it, 
represents the behaviour by nonlinear viscoelasticity 
in terms of a pair of thermally activated Maxwell 
models in parallel, the Escaig theory consists of a 
single thermally activated Maxwell model together 
with a strain-hardening term. In this paper, we present 
experimental data on oriented polyethylene fibres. 
We show that, at least in this context, the Leeds model 
retains the desirable properties of the Escaig model, 
and also succeeds in modelling experimentally 
observed behaviour for oriented polyethylene fibres 
which is beyond the capability of the Escaig theory, 
while at the same time eliminating the need for the 
concept of strain-hardening. 
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1.1. The Escaig theory 
The model consists of an elastic spring in series with 
a modified thermally activated dashpot, shown in 
Fig. 1. For a conventional Eyring thermally activated 
process [8], the plastic strain rate, ~p, corresponding to 
a stress, a, is given by 

ip = ep0eXp sinh ~ (1) 

where ~p0 is the plastic strain rate corresponding to 
zero stress, AH the apparent activation enthalpy, k, 
Boltzmann's constant, T the temperature in degrees 
Kelvin, and v, the activation volume. For convenience 
this can be rewritten as 

ep = e'p0 sinh (aV) (2) 

where ~'p0 = c;p0 exp ( -  AH/kT)  and V = v/kT. For 
two states, 1 and 2, corresponding to non-zero stress 

~p2 = ~p[ sinh (a2 V)/sinh (o~ V) (3) 

and where aj V and ~r, V are suitably large 

~p2 = ~pl exp [(o2 --0"1) V] (4) 

Escaig's modification of the thermally activated pro- 
cess is, in effect, to replace Equation 4 by 

~p2 = ~pl exp {[O- 2 - -  O" I - -  K(v.p2 - -  epl)  ] V}  (5)  

where K is referred to as the strain hardening coef- 
ficient. 

The motivation behind this modification originates 
from the results of experiments of the type illustrated 
in Fig. 2. A tensile specimen is rapidly loaded to a 
stress, a 0 + Aa, where Aa ~ o0, and the strain then 
held constant while the stress is allowed to decay to the 
value o0, at which point the specimen is rapidly 
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Figure 1 The Escaig model. 
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reloaded to the stress a0 + Aa, and again allowed to 
relax, and so on. The time, At, for the stress to decay 
from 0.o + Aa to a0 is observed at each step. It is 
reported that each successive decay time, At, exceeds 
the previous one by a constant factor; so that, for the 
ith and (i + 1)th loading step, the ratio of decay times 
At~+t/At, exceeds unity and is constant independent 
of i. This behaviour is not consistent with Equations 
3 or 4, because as there is no difference in stress 
between successive peaks (e.g. points A 1 and A2 of 
Fig. 2), the plastic strain rate at such points would 
always be the same, so that each decay would be a 
copy of the previous one, implying that Ate+ 1/Ati = 1 
for all i. However, it is readily shown that the predic- 
tions of the model of Fig. 1 when the dashpot is 
defined by Equation 5 conform with the reported 

behaviour. 
The total strain, ~, is the sum of the elastic strain, ee, 

in the spring and the plastic strain, ep, in the dashpot, 
so that 

= ee + ~p (6) 

o r  

e = a l E +  ep (7) 

where E is the modulus of the spring. Hence for a 
constant strain, c 

~p = -6- /E (8) 

t/) 

82 

698 

Time 

and 

~p2 - -  ~pl = - -  (0" 2 - -  (3-1 ) / E  ( 9 )  

where 0.~ and a 2 are stresses at different times corre- 
sponding to plastic strains ep~ and %2- 

Hence, Equations 8 and 9 can be used in Equation 
5 to give a differential equation in stress corresponding 
to stress relaxation behaviour 

0"2 ~ 0-1 exp [ (1 + K / E ) ( a 2  - 0.1) V] (10) 

This can be solved to give the stress at time t in terms 
of the stress at an earlier time zero 

a ( t )  = a ( 0 ) -  In(1 + t /c) /V(1 + K / E )  (11) 

where 
c = -[(1 + K/E)~(O)V] -1 (12) 

We associate zero time with the beginning of a decay 
cycle (points Ai or A 2 in Fig. 2). For K = 0, Equation 
11 is the Guiu and Pratt expression [9]. We can 
generate an expression involving At and Aa by making 
appropriate substitutions into Equation 11. 

A0. = In (1 + At/c) /V(1 + K /E)  

from which we deduce that At/c is constant, indepen- 
dent of the particular decay step. So for the ith and 
(i + 1)th cycles, 

A t i + l / A t i  = ci+ I/ci 

= 6- i (0)/di+ l (0) (using Equation 12) 

= dp, (0)/~pt+l (0) (using Equation 8) 

= exp { -  K [epi (0) - s  ( 0 ) ]  V }  

(using Equation 5) 

(13) 

If we assume that loading is so rapid that it results in 
no change in the plastic strain (i.e. that the plastic 
strain stays constant between points B~ and A~+~ in 
Fig. 2), then from Equation 7 

epi+l  ( 0 )  - -  epi ( 0 )  = A0"/E 

from which Equation 13 gives 

At~+l/Ati = exp ( K V A a / E )  (14) 

The argument of the exponential is constant and posi- 
tive, and so At)+l/Ati is constant and greater than 1. In 
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Figure 2 Step stress relaxation experiment. 



this way the Escaig theory corresponds to experimental 
findings. Note that for K = 0, corresponding to the 
conventional Eyring process 

Ali+ I = Ati 
Additional support for the Escaig theory derives from 
the fact that experimental relaxation curves are 
reported to fit very closely to Equation 11. 

1.2, Critique of the Escaig theory and 
proposed alternative model 

In the Escaig theory it is assumed that, in the experi- 
ment of Fig. 2, the increasing strain and the accom- 
panying slowing down of the rate of stress decay 
are causally related. This is not the only possible 
interpretation; for instance, the slowing down of the 
stress decay rate might be an effect of a fading memory 
of the fast loading at the start of the experiment, 
and bear no relationship with the increasing strain. 
This question has led us to the consideration of the 
relaxation and recovery experiment illustrated sche- 
matically in Fig. 3, where the total strain decreases 
with time, as an experimental test of whether the 
causal relationship exists. In such an experiment, 
loading cycles resembling those of the original Fig. 2 
experiment are followed by rapid partial unloading at 
t i m e  t I to a strain which is held constant, and the stress 
allowed to recover to a predetermined level at time t3, 
and then unloaded to the same level as after the initial 
unloading, and further recovery allowed, and so on. 
Thus for times after t2, the specimen strain now 
decreases at each unloading step, so that strain 
hardening events should be reversed, whereas the 
effects of any transients should continue to diminish as 
in the experiment of Fig. 2. 

It is possible to set boundary conditions on the 
constant strain solution of Equation 11 which corre- 
spond to stress recovery (a (0) > 0, 5- (0) > 0) and 
then the equation yields recovery behaviour. As a 
result of the reversal of the strain hardening process, 
Equations 13 and 14 then operate so that the recovery 
times Ati and Ati+ 1 for successive steps are implied to 
satisfy Ati > A&+~. This speeding up of the stress 
recovery is both intuitively unlikely and in contradic- 
tion to our experimental observations, which give 
Ati < A&+~. However, it is not truly a prediction of 
the Escaig theory, because the boundary condition 

# (0) > 0 is not attainable by the model as a conse- 
quence of unloading. The Escaig model consists of 
elements in series, and so exhibits no recovery behav- 
iour; after unloading, the stress continues to decay. 

This in itself might be thought sufficient reason for 
the rejection of the theory for applications to polymers, 
which invariably show recovery behaviour. However, 
any model consisting of a small number of elements 
must be a simplification, because in reality a material 
would be equivalent to a complex array of many 
elements. Transfer of stress from networks which are 
in tension to parallel networks which are in compres- 
sion can be assumed to be the source of recovery 
behaviour. The Escaig model could therefore be over- 
simplified in a way which makes it inadequate for 
representing recovery behaviour, and yet still retain 
some basic validity. A way to examine this possibility 
would be to propose a more complex model with some 
capability of stress recovery; the obvious such model 
consists of two Escaig models with unequal parameters 
in parallel. However, we shall show that this model is 
actually more complex than is necessary, because, 
once the need for a parallel network is accepted, all the 
observed experimental behaviour can be accounted 
for without the need for the introduction of strain 
hardening coefficients. 

Consider the model of Fig. 4, consisting of springs 
with stiffness E ~ and E b with E ~ > E b and Eyring 
dashpots characterized by V" and V b, sp0 '~ and Sp0..b This 
model, termed the two-process model, has been 
applied previously to creep [1, 2] and to single-step 
stress relaxation [1]. A schematic diagram of its 
response to the experimental regime of Fig. 2 is shown 
in Fig. 5, in which the stress in the model is decom- 
posed into the stress in the a-arm and the stress in 
the b-arm. If the properties of the two arms differ 
appreciably, it is inevitable that one will undergo a net 
loss in stress, and the other a corresponding net gain, 
with each decay cycle (e.g. between points Ai and 
Ai+L ). If the a-arm, which already holds most of the 
stress, acquires more, then within a few cycles it will 
hold almost all of the stress, and the system will behave 
as a single process model. If, however, the b-process 
gains in stress as illustrated, a more interesting system 
results in which the process of transfer of stress between 
the two arms can last for many cycles. Moreover, the 
decay time, At,, will increase at each step. This 

t~ 

T i m e  

L ~  

t3 

t2 <----At/-->~--A~i+l---> 

Ti m e 
Figure 3 Stress relaxation and recovery experi- 
ment. 
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Figure 4 The two-process (Leeds) model. 

becomes apparent when we note that, at least in the 
initial stages, the a-process has the faster decay rate 
and is therefore the dominant factor in determining 
Ate; and that at each step, some stress leaks from the 
a-process to the b-process, so that the plastic strain 
rate li;J falls at successive peaks (see Equation 3), with 
the result that the rate of stress decay [6 -'1 =E~'I~;I 
(adapting Equation 8) also decreases, and that finally 
At: increases. It is also clear that this process of stress 
transfer will eventually cease when the stress in each 
arm reaches a level at which there is no net change at 
successive peaks, when At:+~ = At,.. At this stage it is 
not obvious whether this is an important characteristic 
of the model, because this steady state might not be 
reached within experimental time scales. We also note 
that for recovery behaviour the model returns the 
correct response Ate+, /> At: for successive recovery 
times; with one arm in tension and the other in com- 
pression, the stress in each arm decreases in absolute 
value during recovery, and so the stress decay rate in 
each arm, and therefore in the total system, decreases. 

We now show that the two-process model's predic- 
tions of  the stress for the experiment of  Fig. 2 are 
consistent with At:+,/At: ~_ constant for some range 
of  experimental time. For this analytical argument we 
use the exponential approximation to the Eyring 
process of Equation 4, whereas for quantitative 
calculations in succeeding sections we shall use 
numerical methods and the exact hyperbolic sine func- 
tion of  Equations 2 and 3. Suppose a particular decay 
cycle begins at time tA and ends at tB, corresponding 
to points A: and B: in Fig. 5. Then, adapting Equations 

8 a n d  I I w i t h K =  0 

a~, - a~ = In [1 + (t B - tA)VaEak~A]/V ~ (15) 

for the a-arm and 

a b - ag = In [l + (t B - tA)VbEb~A]/VU (16) 

for the b-arm, where it is understood that subscripts A 
or B refer to values at times tA and tB. 

Adding the above two equations and writing 
tB - ta = At gives 

Act = In [(1 + AtV~Ea~pa) l/w 

x (l + a t v ~ e ~ : , )  ':V~] (17) 

This is true for any cycle. Equating arguments on the 
right-hand side for successive ith and (i + l)th cycles 
gives 

a a ga l / b p b  c;b ] Va/vb (l + A t i V  E ovA~)(l + A t i - ~  ,-pAi: = 

(1 + At,+, V"E"~Z,+,)(1 + at,+~ VbEU~,+,) ~:~ 

(18) 

It will be shown below that for physically relevant 
values of  the parameters 

A t ~ V ~ E ~ A  i ~ 1 (19) 

and that the other three similar quantities in Equation 
18 share this property. Equating first-order terms in 
Equation 18 now gives 

a '~ b 'b g a At:V~'(E epA, + E Spa, ) = At:+j 

• (Ea,~pAi+, + EbS~Ai+l)  

By assumption, E ~ > E b, and so after the initial 
rapid loading step a ~ > a b. Subsequently, provided 
that V " does not differ too greatly from V b and ~;~ does 
not differ too greatly from ~pu 0, by Equation 2 
8pAi'a > 8pAi . ' b  It is thus possible that the values of the 
various parameters can be such that the second terms 
in parentheses on either side of Equation 19 may be 
neglected. Then, to first order Ati~pA i is independent of  
i, hence 

Ati~va: ~-- constant (20) 

It then follows from Equation 15 that ~A: aB: 
independent of i. If we assume that loading between 
times tB: and tAi+I is SO f a s t  that only the springs are 
extended, then the difference between stresses at 

Ai Ai§ 

<--Ati Ati.~ 

Time 

Figure 5 Decomposition of stress in Leeds model 
representation of step stress relaxation experiment. 
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successive peaks is given by 

a a ~ a a 
O'Ai+I - -  O'Ai O'Bi + A a E " / ( E  ~ + E b) - -  O"Ai 

which is again a constant. The ratio of plastic strain 
rates at successive peaks is now given by Equation 4 as 
the constant 

~a 'a ~ a a a 
p A i + l / ~ p A i  exp [(O'Ai+I - -  O'ai ) m ] 

so that from Equation 20 we have 

kt ,+l/kt i  ~- exp [ ( ~ % -  a~,+~)V") (21) 

which, because the stress in the a-process is falling, is 
a constant greater than one. Equation 21 shows that 
the two-process model can give predictions which 
resemble those of the Escaig theory. The equation will 
cease to describe the model behaviour after a finite 
number of cycles, and this number will depend on the 
particular values of the model parameters. The ability 
of this, the Leeds model, to represent experimentally 
observed behaviour in detail will now be examined. 

2. Experimental details 
The performance of step stress relaxation of the type 
shown in Fig. 2 presents problems both of control (the 
stopping or starting of rapid straining in response to 
the force signal) and of data handling, due to the large 
amount of data generated. These problems are solved 
by the use of microcomputers in the experimental 
set-up illustrated in Fig. 6. Strain is applied to the 
specimen by an electric motor operating via a gear 
box, controlled by an electromagnetic clutch, and 
the force in the specimen sensed by a strain gauge 
transducer. The motor and clutch are controlled by 
digital signals from a EUROBEEB single board 
microcomputer which operates together with a 
Cumen-Selecta sideways memory carrier and a 
CUBAN twelve-bit analogue interface (Control 
Universal Ltd, Cambridge, UK). The force signal, in 
the form of the analogue output from the strain gauge 
conditioner unit, is read by this ensemble. A program 
written in REAL TIME BASIC running on the 
EUROBEEB controls the switching of the motor and 
clutch and the times at which the force is read, and 
stores force readings and their times in RAM. Because 
of the slow speed of analogue to digital conversion, 
the analogue force signal is not used as a basis for the 
control of motor and clutch; rather, two digital signals 

are generated for this purpose by comparator circuits, 
with the senses of the signals depending on whether 
the force signal exceeds or is less than two levels preset 
by potentiometers. The screen, keyboard and disc 
drives of a BBC Master 128 microcomputer (Acorn 
Computers Ltd, Cambridge, UK) serve the EURO- 
BEEB. Programs run on the Master 128 allow for data 
transfer from the EUROBEEB on to floppy disk. 
Data can be retrieved from disk and displayed and 
analysed during the course of the experiments. 

The material used was a multifilament polyethylene 
fibre, prepared by melt-spinning and drawing to a 
ratio 30 (Alathon 7050, Celanese Fibers Company, 
North Carolina, USA). Fibre specimens of length 
65 mm and cross-section 0.33 mm 2 were subjected to 
step stress relaxation tests, with lower limit stress 
a 0 = 205 MPa, and Aa varying between experiments 
from Aa = 13.7 to 58.4 MPa. The fast loading was at 
a strain rate of 1.2 x 10 -3 sec -~. 

2,1. Application of the two-process model 
In addition to the stress relaxation data obtained in 
the experiments described so far, creep data for this 
material are available and have been reported in a 
previous publication [2]. Because a valid theory of 
nonlinear viscoelasticity should be capable of model- 
ling all mechanical behaviour, we apply the two- 
process model to both the creep data and the stress 
relaxation data, using the same values for the model 
parameters. These values have been obtained by a 
process of trial and error, and we make no claim for 
their uniqueness. 

Initial estimates of the values of V ~, V b,  ~a  and i0 b 
were made on the basis of the observed equilibrium 
creep rates, which are functions of these parameters 
only. It was then necessary to determine whether such 
estimates were consistent with the transient creep and 
stress relaxation behaviour, and to manipulate the 
values of E a and E b to obtain the best possible fit with 
the non-equilibrium experimental data. 

2.2. Stress relaxation :decay time ratios 
We implement the two-process model by solving 
numerically the Eyring Equation 3 for the stress at 
constant rate of strain for each arm of the model; 
the total stress is then the sum of the stresses in the 
two arms. 

BBC MASTER 128 1 
&disk drives / 

Eurobeeb 
& 

interface 
circuits 

connections J m 

override~ 

dutch 

motor on/off 

motor fwd/rev 

anatogue 
output 

digi ta[  < 

output 

stress 

retaxation 

equipment 

t force transducer 
output 

transducer 
conditioner 

& 
comparator 

circuits 

Figure 6 Block diagram of experimental, control 
and data acquisition equipment for stress relaxation 
experiments. 

701 



Rewriting Equation 3 for the a-arm gives 

~;2 = ~;1 sinh (a~ V " ) / s i n h  (cr~ V ~) (22) 

and for a strain rate ~ we have 

~p + d"/E ~ = ~ (23)  

These equations, and similar equations for the 
b-process, can be solved by a finite difference method 
when ~]' and a~ denote stresses at times separated by a 
short time increment and ~ is assumed to be constant. 
Details of  the solution are given in the Appendix. The 
same subroutine is used for both the loading and the 
relaxing stress calculations, with the strain rate 
assigned the value zero in the latter case. The process 
is begun from zero stress using a similar routine in 
which Equation 2 is used rather than Equation 3. 

During this experiment, various imperfections 
ensure that the stress increment, An, is not exactly the 
same at each step. To avoid unnecessary error in the 
predictions, we base them on the stress increment 
actually observed rather than relying on a constant 
average value. Predictions and experimental results 
are compared in Figs 7 to 12, where Ate+ E/At~ is plotted 
against the cycle number, i. The model parameters 
used for these calculations are listed in Table I. The 
figures show results for cr 0 = 205 MPa and average 
values of  Aa of 13.7, 29.8, 36.9, 46.2, 52.3 and 
58.4MPa, respectively, in Figs 7, 8, 9, 10, l l ,  and 12. 
Fig. 7 shows an apparently constant At~+~/At~ over 32 
decay cycles; this is precisely the behaviour which is 
cited as support for the Escaig model, but it is clear 
that the two-process model also conforms to the 
experimental behaviour. The prediction of the total 
time elapsed during this experiment is in good agree- 
ment with that observed. All the subsequent figures 
show Ate+ 1/At~ to be decreasing with increasing i, and 
the model predictions also conform with this. We have 
already noted that the model should begin to behave 
in this way as the process of  transfer of  stress from one 
arm to the other nears completion. The prediction of  
this effect is beyond the capability of  the Escaig 
model, for which At~+~/At~ is constant. The observed 
increase in the initial values of  Ati+l/At i as Ao- is 
increased is also predicted by the two-process model. 
It is apparent, however, that the quality of the predic- 
tions of  the two process model deteriorate as Ao- is 
increased. 

2.3. Stress relaxat ion:relaxat ion curves 
According to the mode] results of  the previous section, 
for all the experiments, 5-" >> 6 -b at all times. The 
difference is greatest for the earliest cycle numbers, 
where it is many orders of magnitude, and is never less 

T A B L E  I F i t t i ng  p a r a m e t e r s  fo r  s t ress  r e l axa t i on  a0 = 

205 M P a ,  c reep  a 0 = 150, 190 a n d  280 M P a  

a b 
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Figure 7 Decay time ratios for step stress relaxation with a 0 = 
205 MPa and Aa = 13.7 MPa; (e) observed. (o) predicted. 

than a factor of  ten. It follows that, for the total stress 
a, 5- = 6 a + 6 -b --- 6 -", and for the stresses at times t~ 
and t2, ~r2 - cq -~ o'~ - o'~. Using the exponential 
approximation for the a-arm (adapting Equation 10 
with K = 0) gives 

~-~ ~--- O. l'a exp [(a~ - ~ ) V  a] 

which in the light of the above approximations is 
equivalent to 

6- z = 6-1 exp [(a2 - al)V"] 

and we know (see Equations 11 and 12 that this 
equation has the Guiu and Pratt [9] solution 

a(t) = a(0) - In (1 + t /c) /V a (24) 

where c = -[6-(0)V"] -l . Thus, in this case, the Leeds 
model gives the same form of equation for the relax- 
ation curves as does the Escaig model. A further 
implication is that the relaxation curves for the experi- 
ments of  Figs 7 to 12 should fit Equation 24, and that 
such fitting should yield values of  V" consistent with 
the value assumed and given in Table I. 

All the stress relaxation curves of the experiments of  
Figs 7 to 12 were fitted to Equation 24 using a least 
squares routine which operated by iterating the par- 
ameter c. The routine was implemented by a program 
running on the BBC Master 128 using the experi- 
mental data stored on floppy disks. Equation 24 was 
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Figure 8 Decay t ime rat ios  for step stress re laxa t ion  wi th  ~0 = 

205 MPa  and Aa = 29.8 MPa;  (O) observed,  (o )  predicted.  
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found to fit all the curves very well. Values o f  V a were 
thus obtained for each curve, and are plotted in 
Fig. 13 as a function o f  o-a. The values cluster around 
the assumed value o f  64 GPa 1, but with a trend of  V a 
decreasing with increasing o-a. If  this is not  due to 
systematic  error, it may  indicate that the assumed 
constant  value o f  V a is a first approx imat ion  and the 
derived values a more  refined approximation;  but 
whether this behaviour would  be due to a true depen- 
dence o f  V" on o -a, or to a stress transfer process 
between e lements  of  an array of  greater complex i ty  
than that assumed in the Leeds theory,  is a quest ion 
that cannot  be addressed at this stage. 

2 . 4 .  C r e e p  
To calculate creep rates from the two-process  mode l  
we first use Equat ions  22 and 23 to derive an expres- 
sion for strain rate 

~2 = ~;1 sinh (o-~ P ) / s i n h  (o-~ V ~) + d~/E a 

(25) 

For  creep, o- = o-~ + o-b and 6- = 6 -~ + 0_b = 0. The 
analogue of  Equat ion  25 for the b -a rm then becomes 

Figure 11 Decay time ratios for step stress relaxation with o0 = 
205 MPa and A�9 = 52.3 MPa; (o) observed, (o) predicted. 

equat ion in o-~ and o-~ 

~1 sinh (o-~ Va)/sinh (o-{ V a) - ~t sinh [(o- - O-~)vb]/ 

sinh [(o- - o-~)V b] + d'~(1/E ~ + l I E  b) = 0 

(27) 

which can be solved by finite differences when o-~ and 
o-~ correspond to times separated by a small time 
increment.  The details o f  this calculation are given in 
the Appendix.  Once o-~ and o-~ are known,  the strain 
rate can be calculated f rom Equa t ion  25. The stress is 
assumed to be initially applied to the specimen at a 
high rate o f  strain, and the same calculation method  is 
used as for the stress relaxation work.  

In Fig. 14 we compare  observed and predicted creep 
rates for stresses o f  150, 190 and 280 MPa,  in the form 
of  strain rate against strain (She rby -Dorn  [10]) plots. 
The calculations were performed using the values o f  
the parameters  listed in Table I. The initial loading 
was assumed to be at a strain rate o f  10 2 sec-i  corre- 
sponding to loading times o f  0.5 to 3 sec, and it was 

-b sinh [(o- -- o-~)Vb]/sinh {(o- - o - ~ ) V  b] ~2 ~-  8pl  

-- (r~/E b (26) 

Subtract ing Equat ions  26 from 25 gives a differential 

150 

<3 140 

+ 

"~" 130 
<3 

1.70 �9 

1-60 

o 

o o 

o �9 
o �9 

o 
1.20 

o g o � 9  

1 . 1 0  O o o o i : : : o e e  ~ 

lOC ~e 8 

cycte  n u m b e r  / 

Figure 10 Decay time ratios for step stress relaxation with % = 
205 MPa and Aa = 46.2 MPa; (O) observed, (O) predicted. 
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verified that substituting a strain rate of  10 -~ sec 1 
had a negligible effect. The calculated strain rates are 
close to the observed ones except at short times. 

3. Discussion and conclusions 
The evidence presented has shown that the two- 
process model gives a consistent representation of 
creep and stress relaxation for stresses in the range 
150 to 280 MPa, and that the Escaig theory cannot 
conform to the observed phenomena. The desirable 
properties of  the Escaig theory - the increasing decay 
time in step stress relaxation experiments, and the 
predicted shape of relaxation curves - are shared by 
the Leeds theory. Further experiments have shown 
that the Leeds model, when used with the data of  
Table I, does not give valid predictions at stresses much 
below the stated range; the modelled creep behaviour 
at 110 MPa is seriously in error, as are predictions of  
step stress relaxation for a 0 -~ 100MPa. However, 
predictions of  similar quality to the ones discussed in 

the previous section, for a similar exercise involving 
stress relaxation with a0 = 100MPa and a range of 
values of  A~ and also for creep at l l 0 M P a ,  were 
obtained with the data of  Table II. The need for stress 
dependent parameters indicates that the two process 
model is an oversimplification. We can conclude that, 
while the Leeds model may not give a true represen- 
tation of events in detail, the type of stress transfer 
process which it embodies is at the root of  observed 
viscoelastic behaviour. 

-1 
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0 
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Figure 13 Values of V" derived from the 
relaxation curve fits on the experiments of 
Figs 7 to 12. Aa values: (O) 13.7, (O) 29.8, 
(n) 36.9, (n) 46.2, (zx) 52.3 and (A) 
58.4 MPa. 
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140 

As an example of  a stress transfer process in a more 
complex model, we can envisage a large parallel net- 
work of thermally activated Maxwell models with 
differing properties; during stress relaxation or creep, 
some of the Maxwell models gain stress at the expense 
of others which lose stress, and the two-process Leeds 
model would approximate to this by lumping together 
the stress-gaining Maxwell models as one arm and the 
stress-losing models as the other arm. The relative 
populations of  the stress-gaining and stress-losing 
Maxwell models, and therefore the values of  the 
parameters in the approximating Leeds model, would 
depend on the applied stress. 

Values for the parameters of  the two-process model 
have been reported previously [2] which were based on 
the equilibrium creep rates and yield behaviour of  the 
material studied here. These values were calculated on 
the assumption that the parameters were constant in 
the range 110 to 900MPa,  the derived activation 
volumes, v, for the two processes being 327 x 10 -3o 
and 30.7 x 10 -30 m 3 (corresponding to values of  V o f  
81 and 7.6GPa-1) .  According to the model predic- 
tions, the smaller activation volume was dominant at 
high stresses, whereas below 300MPa the larger 
activation volume was dominant,  accounting for 
99.8%, 90% and 69% of the total stress at 110, 190 
and 280MPa respectively. The present results are 
relevant to this lower stress range, and it is significant 
that the values V ~ = 64 GPa-1 and V a = 100 G P a -  
of  Tables I and II do not severely conflict with the 
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Figure 14 Observed creep rates at (O) 150, 
([]) 190 and (zx) 280MPa, together with 
Leeds model predictions represented by 
lines. 



T A B L E  I Fitting parameters for stress relaxation a0 = 
205MPa, creep a 0 = 150, 190 and 280MPa 

a b 

V (GPa) ~ 64* 44 + 
E (GPa) 28 2.5 
/'(sec -~) 4.1 x 10 ~ 3.2 x 10 ~ 

*v -~ 260 x 10 30 m 3. 
+v _~ 180 x 10-3~ 3. 

value V = 81 GPa 1 derived from the constant- 
parameter  fit and associated with the process which is 
calculated to be dominant  in this stress range. Our 
present detailed study has shown that the assumption 
of constant (i.e. stress-independent) parameters is 
incorrect, but a fitting procedure derived on this basis 
would be expected to yield approximate data for the 
dominant process. We can apply similar reasoning for 
the higher (up to 900MPa)  stress range where the 
smaller activation volume is calculated to be domi- 
nant, and would expect that the value obtained for 
this activation volume to be physically significant in 
the high-stress regime. This activation volume has 
been identified with the ~-relaxation process, which is 
widely believed to be associated with crystalline c-slip 
in terms of a Reneker-like defect moving through the 
crystalline regions. 

A p p e n d i x :  N u m e r i c a l  s o l u t i o n s  o f  
e q u a t i o n s  of  t h e  t w o -  
process  m o d e l  

A.1. Step stress relaxation experiments 
The stress relaxation experiments are programmes 
consisting of regimes of both constant strain rate 
loading and of stress relaxation at constant strain. In 
either case the strain rate is constant, and the same 
numerical routine is used to calculate the stress. The 
governing Equations are 21 and 22. Subscripts i-1 and 
i refer to states separated by a time increment At. A 
finite difference formulation is used, using forward 
differences, so that the time derivative of  stress in the 
a-arm is approximated by assuming that 

"~ = -- ~ )/At (A1) o-, (~; o-,, 

Using Equation 21 this becomes 

�9 a ' - 1 - a  " a  a O . a  ai = (smh [(ep~/ep, 1) sinh (or i t V") ] /V  ~ - ,_l)/At 

(A2) 

Then using Equation 22 
�9 a ' a  "a 
epi + (sinh -I [(epi/~,pi 1) 

x sinh (a~-i V " ) ] / V  ~ - a~ , ) / E " A t  - {, = 0 

(A3) 

where ~ is the constant strain rate. At each time 
increment Equation A3 is solved for ~j using 
Newton's  method [11]. The stress ~ is then given by 
the relation 

a o .a  ~ = sinh -~ [ip~ sinh ( ~_~ V ~ ) / ~  ~] 

obtained by rearranging Equation 21. The same 
method is used to obtain a~, and thus the total stress 
a~ = er~ + @. The value of cr~ determines whether or 

not the value of strain rate used for the calculation for 
the next time step is changed, from the rapid loading 
value to zero when o-, > a0 + A~, or from zero to the 
rapid loading value when a~ < ~0. Different values of 
At are used for the rapid loading and stress relaxation 
regimes. 

The process starts with a ~-t = a~_~ = 0, and so for 
the first time increment Equation A2 is replaced by an 
equation based on Equation 2 rather than Equation 
21, with the result that Equation A3 is replaced by 

~ + sinh I ( ~ p l / ~ ; ) / V ~ E a A t  - ~ = 0 Gpl  

which is also solved by Newton's  method. 

A.2. C r e e p  e x p e r i m e n t s  
Here the governing equation is Equation 26. The 
forward difference method is again used and we obtain 
for a constant total stress, 

G a g sinh (ap V~)/sinh (~-1V~) p i -  1 

_ epi-U 1 sinh [(o- - op)vb)/sinh [(a --o-~ 1)V b] 

+ (a~ -- ~ _ I ) ( 1 / E  a + 1 / E b ) / A t  = 0 (A4) 

Equation A4 is solved by Newton's  method for a~. 
The total creep rate ~ is then given by Equation 24 

= ,~ a~ V ~) ~i  gpi-I sinh (a~V")/sinh ( ,_~ 

+ (ap - ~_~)/s a t  

The initial loading to the constant stress, a, is assumed 
to be at a constant strain rate, and the routines used 
for the stress relaxation calculations are employed to 

�9 , ~b corresponding give the values of  ~r~ l, ~b I, gpi t, p,-i 

to the initial loading. 
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